Problem
Given an array of functions [f1, f2, f3, …, fn], return a new function fn that is the function composition of the array of functions.
The function composition of [f(x), g(x), h(x)] is fn(x) = f(g(h(x))).
The function composition of an empty list of functions is the identity function f(x) = x.
You may assume each function in the array accepts one integer as input and returns one integer as output.
Example 1:
Input: functions = [x => x + 1, x => x * x, x => 2 * x], x = 4 Output: 65 Explanation: Evaluating from right to left … Starting with x = 4. 2 _ (4) = 8 (8) _ (8) = 64 (64) + 1 = 65
Example 2:
Input: functions = [x => 10 * x, x => 10 * x, x => 10 * x], x = 1 Output: 1000 Explanation: Evaluating from right to left … 10 _ (1) = 10 10 _ (10) = 100 10 * (100) = 1000
Example 3:
Input: functions = [], x = 42 Output: 42 Explanation: The composition of zero functions is the identity function
Constraints:
-1000 <= x <= 1000 0 <= functions.length <= 1000 all functions accept and return a single integer
Pre analysis
Will use reduce to solve this problem. This will be iterative solution.
Another solution
/**
* @param {Function[]} functions
* @return {Function}
*/
var compose = function (functions) {
return function (x) {
for (let i = functions.length - 1; i >= 0; i--) {
x = functions[i](x);
}
return x;
};
};